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Dynamic behavior of two-phase systems in physical equilibrium
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Abstract

The steady state and dynamic behavior of two-phase systems in physical equilibrium is investigated. The autonomous and non-autonomous
systems are considered. The pseudo-arclength bifurcation technique reveals steady state multiplicity patterns not previously observed, in-
cluding isola and mushroom patterns. It is shown that degenerate singular points of codimension 2, which violate the non-singularity and
transversality conditions of the classical Hopf theorem exist.

The effect of the forcing amplitude and frequency on the behavior of the non-autonomous system is investigated at a number of chosen po-
sitions of the center of forcing. It is found that the forced system is very sensitive to the position of the center of forcing relative to Hopf bifur-
cation points of the unforced system. The excitation diagram shows that a period doubling region may exist at the top of a 2/1 resonance horn.
It is shown that a Hopf bifurcation curve of the stroboscopic map is originated at bifurcation points having double−1 Floquet multipliers.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Most reactions of importance in chemical industry are
mainly heterogeneous systems[1]. Large classes of these
reactions such as nitrations, sulfonations and alkylations are
carried out in two fluid phases[2]. Continuous stirred tank
reactors are widely used in these operations. The rational
design and control of such reactors require fundamental un-
derstanding of their dynamic behavior.

The literature on the dynamic behavior of the continuous
stirred tank reactors of homogeneous systems is very exten-
sive[3–8]. However, for multi-phase systems the literature is
limited [9]. This is could be due to the fact that in multi-phase
systems the hydrodynamic is very complex as well as the in-
teraction of mass and heat transport and chemical reactions
[10–14]. In comprehensive articles, Schmitz and Amund-
son[2,15] created models, which simulate the physical rate
processes of heat and mass transfer between phases of per-
fectly mixed two-phase systems. The authors, inspired by
the graphical work of Van Heerden[16] used the models
to analyze the multiplicity and stability of steady state so-
lutions of perfectly mixed two-phase systems in physical
equilibrium. Only three steady states at certain parameters
were presented. Linearization approach was implemented
elegantly to analyze the stability criteria.
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Chemical reactors exhibit a wealth of non-linear phenom-
ena such as steady state multiplicity, quasi-periodicity and
chaos. Chemical engineers have become much interested to
study the features of the steady state multiplicity of reacting
systems in multi-parameter space using bifurcation analysis
[17–25]. The objective of bifurcation theory is to describe
any sudden qualitative changes in the behavior of a system
as a control parameter is smoothly varied. For example, a
reactor at steady state might give way to a periodic oscilla-
tion or chaotic behavior as the feed temperature increases.
The possibilities of changes are obtained in form of bifur-
cation diagrams. To know the state of a system at any time
implies knowledge of the paths taken or not taken. It is also
known that the non-linear phenomena can be very useful or
harmful to the chemical processes. For example, chaos is de-
veloped through sequences of bifurcations. This non-linear
phenomenon can be utilized in combustion applications to
enhance the mixing of air and fuel and thus leading to an
improved performance. Chaotic regions can be used to of-
fer great flexibility to operate chemical systems due to an
infinite number of unstable attractors embedded in a chaotic
attractor which can be stabilized according to one’s wishes.
On the other hand, chaotic regions can be very harmful to
stability and control of chemical processes. For example the
butterfly effect, which can be produced by small uninten-
tional disturbances can render our long term predictions of
the performance of chemical processes. Moreover, unsteady
state operations have been the object of much attention,
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Nomenclature

a forcing amplitude
CA overall molar concentration of component A

(kmol/m3)
CP overall heat capacity (kJ/kmol K)
Ci
P heat capacity of phasei (kJ/kmol K)

Di
a Damköhler number of phasei

Ei Activation energy in phasei (kJ/kmol)
F total molar flow rate (kmol/s)
FA total molar flow rate of component A

(kmol/s)
Fi molar flow rate of phasei (kmol/s)
−�HR heat of reaction (kJ/kmol)
ki reaction rate constant in phasei (s−1)
kio pre-exponential factor in phasei (s−1)
KA distribution coefficient of component A
N total number of moles inside the reactor

(kmol)
Ni number of moles of phasei (kmol)
NA number of moles of component A inside the

reactor (kmol)
P dimensionless forcing period
Po dimensionless natural period of the

autonomous limit cycle
q volumetric flow rate (m3/s)
r ratio of an overall quantity in exit stream to

that of reactor contents
R ideal gas constant (kJ/kmol K)
t time (s)
T temperature inside the reactor (K)
Tc cooling coil temperature (K)
Ti temperature of phasei (K)
T∗ temperature rise if all of entering A were

reacted adiabatically (K)
U product of overall heat transfer coefficient

to area of cooling coil (kmol/s K)
U′ dimensionless heat transfer coefficient
v overall molar volume (m3/kmol)
vi molar volume of phasei (m3/kmol)
V reactor volume (m3)
Vi volume of phasei (m3)
x vector of state variables
xiA mole fraction of component A in phasei
X dimensionless overall concentration of

component A
yi mole fraction of solventi
yA overall mole fraction of component A
Y dimensionless temperature
Yc dimensionless cooling coil temperature
Yo dimensionless overall temperature of

the feed
Yi

o dimensionless feed temperature of
phasei

Zi volume fraction of phasei

Greek letters
γi dimensionless activation energy in phasei
ε ratio of the holding times
θ dimensionless time
λ vector of system parameters
τ total holding time (s)
τi holding time of phasei (s)
φ molar ratio of the phases in the reactor
ψ ratio of volumetric heat capacity of reactor

contents to volumetric heat capacity of
the feed

ω forcing frequency (rad/s)
ωo natural frequency of the autonomous

limit cycle (rad/s)

Subscripts
c coolant
e exit conditions
o feed conditions

Superscripts
cf center of forcing
� phase�
� phase�

especially with respect to the enhancement of the yield of the
desire products and the reactor stability and control[25–30].

The recent concepts and modes of thought of non-linear
dynamics have been implemented in this study to increase
our understanding of two-phase systems in physical equi-
librium and to reveal the non-linear phenomena that might
exist. In this paper, we are treating the same problem of
the two-phase systems in physical equilibrium presented by
Schmitz and Amundson[2]. We seek to investigate more dy-
namic features of the two-phase systems by implementing
the bifurcation analysis. First, we analyze the multiplicity
and stability characteristics of the autonomous (unforced)
system making use of the numerical bifurcation package
AUTO [31], which based on the pseudo-arclength continua-
tion technique. Second, we have one step further in the anal-
ysis by considering the non-autonomous (forced) system in
which the basic state is a periodic operation. We analyze the
forced system making use of the stroboscopic map and ex-
citation diagrams[25–30]. The techniques to be used here
seem to have capabilities to open the possibility for signifi-
cant new results.

2. Transient model

The problem investigated is that of a single, first order,
exothermic reaction:

A → R
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Fig. 1. Schematic representation of the continuous stirred tank reactor.

taking place in a CSTR into which liquid phases� and �
are fed continuously. The specific reaction rate constants in
phase� and� are given by

k�(T) = k�
o e−E�/RT (1)

k�(T) = k
�
o e−E�/RT (2)

A schematic diagram of the reactor is shown inFig. 1. The
following simplifying assumptions are used in the derivation
of the conservation equations of the model[2]:

1. The system is a dilute liquid–liquid system and the phases
are completely immiscible liquids.

2. The system is perfectly mixed i.e. no distributions of any
kind within the system.

3. Interfacial transfer rates are rapid and the system is in
physical equilibrium.

4. The temperature of the phases is equal.
5. The reaction rate alone is controlling the rate of conver-

sion.
6. The properties of solvents� and � are constant with

respect to the temperature and concentration.
7. Heats of solution are neglected, and heat capacities are

constant.

During the transient state the phases are in physical equilib-
rium and the components are distributed between the phases
according to the following equilibrium relationship:

x
�
A = KAx

�
A (3)

where x�
A and x

�
A are mole fractions of component A in

phases� and�, respectively.
A mass balance for component A gives

dNA

dt
= (F�

o x
�
Ao + F

�
o x

�
Ao) − (F�

e x
�
A + F

�
e x

�
A)

− (k�N�x�
A + k�N�x

�
A) (4)

and a heat balance for the reactor gives

dNCPT

dt
= (F�

oC
�
PT

�
o + F

�
oC

�
PT

�
o )

+ (−�HR)(k
�N�x�

A + k�N�x
�
A)

− (F�
eC

�
P + F

�
eC

�
P)T − U(T − Tc) (5)

where subscripts o and e refer to the feed and exit streams,
respectively;NA and N the total moles of component A
and the two phases in the reactor, respectively;F the molar
flow rate; N� and N� the moles of the� and � phases in
the reactor, respectively;U the product of an overall heat
transfer coefficient and a surface area.

The changes in the amount of the solvents� and � are
given by the following transient equations:

dN�

dt
= F�

o − F�
e (6)

dN�

dt
= F

�
o − F

�
e (7)

The total volume of the system is constant, then

dV

dt
= v� dN�

dt
+ v� dN�

dt
= 0 (8)

where v� and v� are the molar volumes of the� and �
phases, respectively.

The holding time for each phase is defined by

τ� = N�

F�
o
, τ� = N�

F
�
o

(9)

and the ratio of the holding times is given by

ε = τ�

τ�
(10)

and the molar ratio of the phases in the reactor is defined as

φ = N�

N�
(11)

Experiments have shown that the ratio of the phases in the
reactor is an independent parameter[2,32] and may be re-
lated to exit the flow rates as

F
�
e

F�
e

= ε
N�

N�
= εφ (12)

In two-phase systems, overall quantities inside the reactor
are not equal to overall quantities leaving the reactor. Based
on the above relations, the overall mole fraction of compo-
nent A (yA), overall molar volume (v), overall concentration
of A (CA) and the overall heat capacity (CP ) within the re-
actor are given by

yA=NA

N
=N�x�

A + N�x
�
A

N� + N�
= x�

A + φx
�
A

1 + φ
= x�

A(1 + φKA)

1 + φ

(13)



186 M.E.E. Abashar / Chemical Engineering Journal 97 (2004) 183–194

v = V

N
= N�v� + N�v�

N� + N�
= v� + φv�

1 + φ
(14)

CA = NA

V
= N�x�

A + N�x
�
A

V
= x�

A(1 + φKA)

v� + φv�
= yA

v

(15)

CP = N�C�
P + N�C

�
P

N� + N�
= C�

P + φC
�
P

1 + φ
(16)

Similarly at the exit of the reactor

yAe = FAe

Fe
= F�

e x
�
A + F

�
e x

�
A

F�
e + F

�
e

= x�
A + εφx

�
A

1 + εφ

= x�
A(1 + εφKA)

1 + εφ
(17)

ve = qe

Fe
= F�

e v
� + F

�
e v

�

F�
e + F

�
e

= v� + εφv�

1 + εφ
(18)

CAe = FAe

qe
= F�

e x
�
A + F

�
e x

�
A

F�
e v

� + F
�
e v

�

= x�
A(1 + εφKA)

v� + εφv�
= yAe

ve
(19)

CPe = F�
eC

�
P + F

�
eC

�
P

F�
e + F

�
e

= C�
P + εφC

�
P

1 + εφ
(20)

Let the symbolr will be used to designate the ratio of an
overall quantity in the exit stream to that inside the reactor,
then

ry = yAe

yA
== (1 + εφKA)(1 + φ)

(1 + φKA)(1 + εφ)
(21)

rv = ve

v
= (1 + εφv�/v�)(1 + φ)

(1 + φv�/v�)(1 + εφ)
(22)

rCP = CPe

CP

= (1 + εφC
�
P/C

�
P)(1 + φ)

(1 + φC
�
P/C

�
P)(1 + εφ)

(23)

Let y� andy�
e and will be used as the mole fraction of solvent

� inside the reactor and in the exit stream, respectively. Then

y� = N�

N
= N�

N� + N�
= 1

1 + φ
(24)

y�
e = F�

e

Fe
= F�

e

F�
e + F

�
e

= 1

1 + εφ
(25)

r� = y�
e

y�
= 1 + φ

1 + εφ
(26)

if the densities of the phases are constant, the volumetric
flow rates at the inlet (qo) and exit (qe) of the reactor should
be the same. Thus

Fovo = Feve = Fevrv (27)

and the total holding time is given by

τ = V

qo
= V

Fovo
= N

Ferv
=

(
r�

rv

)
τ� =

(
r�

rv

)
τ� (28)

let the ratio of volumetric heat capacity of reactor contents
to volumetric heat capacity of the feed is given by

ψ = CP/v

CPo/vo
(29)

The molar ratio of the phases (φ) can be expressed in terms
of volume fraction (Z�) of phase� as

φ = N�

N�
= V �/v�

V �/v�
= 1 − Z�

(v�/v�)Z�
(30)

where

Z� = V �

V
(31)

Now let us define the following variables and parameters:

X = CA

CAo
, Y = T

T ∗ , Yc = Tc

T ∗ , θ = t

τ
,

T ∗ = (−�HR)yAo

CPo
, D�

a = τk�
o, D

�
a = τk

�
o,

γ� = E�

RT∗ , γ� = E�

RT∗ ,

Yo = Y�
o + εφ(C

�
P/C

�
P)Y

�
o

1 + εφ(C
�
P/C

�
P)

, U ′ = U

FoCPo
(32)

Substitutions of the above definitions reduceEqs. (4)–(8)
to

dX

dθ
= 1 −

(
ry

rv

)
X − D�

a e−γ�/Y + D
�
aφKA e−γ�/Y

1 + φKA
X

(33)

d(ψY)

dθ
= Yo + D�

a e−γ�/Y + D
�
aφKA e−γ�/Y

1 + φKA
X

−
(
rCP

rv

)
(ψY) − U ′(Y − Yc) (34)

dZ�

dθ
= Z�

o −
(
r�

rv

)
Z� (35)

3. Computational techniques

The bifurcation diagrams were obtained by using the soft-
ware package AUTO-86 of Doedel and Kernévez[31]. This
package is able to trace out the entire stable and unsta-
ble steady state and periodic branches and locates the limit
and Hopf bifurcation points. AUTO uses pseudo-arclength
continuation technique to overcome the problem of tracing
branches of solutions past singularities. The eigenvalues and
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Floquet multipliers were computed along the branches to
determine their stability properties.

A stiff differential equation solver called DGEAR from
the IMSL [33] was utilized to solve the system of the or-
dinary differential equations (33)–(35) to obtain the phase
plane and time trace diagrams. To ensure accuracy, auto-
matic step size and double precision were used with input
relative error bound of 10−14.

The period of the oscillation of the natural system (un-
forced) was determined with high accuracy. A shooting
algorithm using Newton method was employed for this pur-
pose[25]. Consider the system of the ordinary differential
equations:

dx
dθ

= f (x,λ) , x ∈ R
n (36)

wherex is a vector of state variables,f a vector of non-linear
functions andλ a vector of system parameters. A periodic
trajectory must satisfy the boundary conditions:

x(θ = 0) = x(θ = Po) (37)

wherePo is the period of the limit cycle. The solution of this
two-point boundary problem is equivalent to the solution of
the system of equations:

F(x, Po) − x = 0 (38)

where Po is unknown andF(x, Po) is obtained by inte-
gratingEq. (36). Since all points on the periodic trajectory
coincide after periodPo, an anchor equation of the form:

N(x, Po) = 0 (39)

is utilized to eliminate free translation in time (infinity of
solutions).Eqs. (38) and (39)may be solved using Newton
method, where the Jacobian is given by

J =




∂F
∂x

− I
∂F
∂Po

∂N

∂x

∂N

∂Po


 (40)

whereI is the identity matrix and the derivatives∂F/∂x are
computed variationally.

For the forced (non-autonomous) system:

dx
dθ

= f(x, θ,λ), x ∈ R
n (41)

the vector field depends explicitly on time. Excitation dia-
grams and stroboscopic maps are used to study the response
of the forced systems[25–30]. The excitation diagrams are
bifurcation diagrams of forced amplitude (a) and frequencies
(ω/ωo = P/Po = n/m), whereω andωo are the frequen-
cies of the forced and unforced (natural) systems, respec-
tively. P (=2π/ω) andPo (=2π/ωo) are the periods of the
forced and unforced systems, respectively, andn andm are
prime integers. At low forcing amplitudes andn andm are
rational numbers, the periodic trajectories form frequency

locking regions having periods which are an integer multi-
ple of the forcing period (nP) and develop on a surface of a
torus (doughnut-shape). This torus is the result of forcing the
limit cycle of the natural system (autonomous system). The
boundaries of these regions are loci of saddle-node bifurca-
tions and called resonance horn (entrainment, sub-harmonic,
Arnold tongue) regions. The excitation diagrams may have
different regions of periodicity, quasi-periodicity and chaos
[25,27,30].

The forcing periods(P = (n/m)Po) always present in the
response of the forced systems and used to strobe these sys-
tems. The projections of the stroboscopic points on planes
are called stroboscopic maps. The stroboscopic maps reduce
the dimension of the problem e.g. the periodic trajectories
present as fixed points and tori as invariant circles. Bifurca-
tions in the excitation diagrams e.g. saddle-node, Hopf and
period doubling are analyzed by computing the eigenvalues
(Floquet multipliers) of periodic responses. The condition
for a periodic solution may be written as

Fk(x,λ) − x = 0 (42)

where Fk(x,λ) is the kth iterate of the stroboscopic
map.Eq. (42)may be solved by Newton–Raphson iterations
and the Jacobian matrix of the stroboscopic map is given
by

J(x,λ) = DFk(x,λ) − I (43)

SinceF is not algebraic, the Jacobian is obtained variation-
ally by integrating the model equation (41) with the follow-
ing variational equations:

dB
dθ

= ∂f
∂x

[x(xo, θ,λ), θ,λ] · B, B(0) = I (44)

which are integrated until a timeθ = kP, where

DFk(xo,λ) = B(kP) (45)

upon convergence, the eigenvalues of the matrixB are the
Floquet multipliers, which determine the bifurcation crite-
ria of the periodic orbit. Examples of the bifurcation of the
response of the forced system are saddle-node, period dou-
bling and Hopf bifurcation of the stroboscopic map. These
types of bifurcations are usually shown in the excitation di-
agrams.

4. Results and discussion

Since this system contains a large number of parameters,
so it is a difficult task to study the entire parameter space.
Therefore, we consider in this study samples of parameter
spaces to reveal some of steady state and dynamic features,
which may arise, in such complex multi-phase systems. The
parameters used in this study are taken from the work of
Schmitz and Amundson[2] and shown inTable 1.
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Table 1
Data used for the continuous stirred tank reactor[2]

KA 0.2

C
�
P /C

�
P 1.0

Uv�/VC�
P (s−1) 6.37 × 10−3

v�/v� 1.0
Y�

o 1.8

Y
�
o 1.8

γ� 63.5
γ� 51.5
ε 0.8

4.1. Autonomous system

Fig. 2(a) and (b) shows one-parameter bifurcation dia-
grams for the dimensionless overall concentration (X) and
temperature (Y) inside the reactor, respectively. Damköhler
number (D�

a) of phase� is considered as the bifurcation
parameter. The bifurcation diagrams clearly show the exis-
tence of a region of multiple steady state solutions between
two static limit (saddle-node) points (SLP1, SLP2) and
another region of periodic solutions between two Hopf
bifurcation points (HB1, HB2). The system undergoes a
saddle-node bifurcation, when one of the real eigenvalues
passes through the origin of the complex plane i.e. the
Jacobian becomes singular and a saddle point coincides
with a node point. The number of the limits points is even
and is known to produce the hysteresis effect (ignition and
extinction phenomena). An unstable steady state branch of
a saddle type connects the two limit points as shown in
Fig. 2. The eigenvalues of this branch are pure real of op-
posite signs. The positive and the negative signs correspond
to the unstable and stable manifolds enter the saddle point
and are called separatrices, which separate two basins of
attraction of the steady states. The Hopf bifurcation occurs
when a pair of complex conjugates of eigenvalues crosses
the imaginary axis transversally. At the Hopf bifurcation
point periodic solutions (oscillations) appear. In our case,
the periodic solution is stable because the Floquet multipli-
ers lie within a unit circle in the complex plane.Fig. 3(a)
shows a sample of a limit cycle (periodic solution) at
lnD�

a = 29.0, and the corresponding time trace is shown in
Fig. 3(b).

For further analysis the saddle-node (turning) points and
the Hopf bifurcation points inFig. 2 are used to gener-
ate a two-parameter bifurcation diagram.Fig. 4 shows the
two-parameter bifurcation in(Yc,D

�
a) space. The continu-

ation of the static limit points is shown inFig. 4(a). The
continuation of the Hopf bifurcation points is also shown
in the enlargement region presented inFig. 4(b). The lo-
cus of the static limit points forms a cusp (singular point)
of codimension 2 atYc = 1.8343. The cusp divides the
plane into two steady state regions I and II, which have
different steady state multiplicity patterns. The locus of
the Hopf bifurcation points attains a maximum point at

Fig. 2. One-parameter bifurcation diagram atYc = 1.84: (a) dimensionless
overall concentration of component A (X) vs. lnD�

a ; (b) dimensionless
temperature (Y) vs. lnD�

a .

which two Hopf bifurcation points coincide. This maxi-
mum point is a degenerate Hopf bifurcation point, since
the complex conjugate eigenvalues with real parts cross the
imaginary axis tangentially i.e. violate the cross condition
of the Hopf theorem[8]. The locus of the Hopf bifurca-
tion point is also terminates on the locus of the static limit
point at the cusp and at region I forming another type of
degenerate bifurcation points. These types of the degener-
ate bifurcation points are called double zero degeneracies
because the pure pair imaginary eigenvalues characterizing
the Hopf bifurcation point tend to zero. The coalescence
of the Hopf and the static limit points at the cusp (Yc =
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Fig. 3. Dynamic simulation of unforced reactor atYc = 1.84 and
lnD�

a = 29.0: (a) phase plane; (b) time trace.

1.8343) is shown in the bifurcation diagram presented in
Fig. 5(a).

In general unique solutions exist in the absence of the
static limits points. In region I, a unique solution and isola
patterns exist. The unique solution could exist when there are
no limit points (e.g.Yc < 0) as shown inFig. 4(a). The isola
pattern is shown by the representative bifurcation diagram in
Fig. 5(b) atYc = 1.8300. In region II, a mushroom and an S
(hysteresis) pattern could exist as shown in the representative
bifurcation diagrams presented inFig. 5(c) and (d) atYc =
1.8400 and 4.0000, respectively. This implies that one can
find the mushroom pattern exists in between the isola and S
patterns.

Fig. 4. Two-parameter bifurcation diagram: (a) locus of static limit points
(SLP); (b) enlargement region of the loci of static limit points (SLP) and
Hopf bifurcation points (HB).

4.2. Non-autonomous (forced) system

It is known that complex behavior is expected in the
vicinity of degenerate singular points[25]. Fig. 6 shows a
one-parameter bifurcation diagram for the autonomous (un-
forced) system at lnD�

a = 29.3 in the neighborhood of the
cusp point shown inFig. 4. The forcing variable (Yc) is cho-
sen as a bifurcation parameter. This figure is essential be-
cause it represents the limiting case of the forced system,
as the forcing amplitude tends to zero i.e. the state of the
unforced (natural) autonomous system on which we impose
the effect of the forcing variable.

The bifurcation diagram is divided into three regions A, B
and C. Stable branches of unique steady state solutions exist
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Fig. 5. One-parameter bifurcation diagram of dimensionless temperature vs. lnD�
a : (a) coincidence of the cusp point and the Hopf bifurcation point at

Yc = 1.8343; (b) isola pattern atYc = 1.8300; (c) mushroom pattern atYc = 1.8400; (d) S-shaped patter atYc = 4.0000.

in regions A and C and a stable periodic solution originates
from two Hopf bifurcation points (HB3 = 1.836761, HB4 =
1.892585) exists in region B.

We consider the forced reactor when the coolant temper-
ature is changed according to

Yc = Ycf
c + a sin(ωθ) (46)

whereYcf
c is the coolant temperature, which represents the

position of the center of forcing. In this case, the system
becomes a non-autonomous system since the vector field
(Eqs. (33)–(35)) depends explicitly on time (θ). The lim-
iting case (unforced reactor) chosen in this study is a full
time oscillator in region B, which has a stable limit cycle
surrounding an unstable steady state. The forcing cycle de-
pends on the position of the center of forcing and the mag-

nitude of the forcing amplitude. During the forcing cycle,
we could force an oscillator alone (region B) or an oscillator
plus phase planes of unique steady states when the forcing
amplitude reaches the Hopf bifurcation points i.e. regions
A + B, B + C or A + B + C.

The variation of the natural period (Po) of the unforced
reactor (autonomous system) with the coolant temperature
(Yc) between HB3 and HB4 is shown inFig. 7. Three centers
of forcing cf1, cf2 and cf3 at Ycf1

c = 1.851811,Ycf2
c =

1.837218 andYcf3
c = 1.890070 are considered. The case

of the first center of forcing (cf1) is considered with more
details.

For the first center of forcing (cf1) the period of oscilla-
tion of the autonomous system isPo = 3.085124. Due to
the infinity of the rational numbers only one representative
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Fig. 6. One-parameter bifurcation diagram of the unforced reactor model
at lnD�

a = 29.3.

resonance horn with its tip atω/ωo = Po/P = n/m = 2/1
is generated as shown inFig. 8. This two-parameter excita-
tion diagram is a function of the forcing amplitude (a) and
the ratio of the forcing and natural frequencies (ω/ωo). The
diagram may be convenient to describe the expected dy-
namic behavior of the forced system. The possible behavior
of the forced system could be periodic, quasi-periodic and
chaotic[25]. Fig. 8 is divided into four regions: entrainment
region (ER), quasi-periodic region (QPR), period doubling
region (PDR) and fully entrainment region (FER).

The entrainment (frequency locking, sub-harmonic) re-
gion is formed at low forcing amplitude as a V-shaped

Fig. 7. Period of oscillation of the unforced reactor vs. dimensionless
cooling coil temperature.

Fig. 8. Excitation diagram of the 2/1 resonance horn for the first center
of forcing (cf1) at Ycf1

c = 1.851811.

resonance horn as shown inFig. 8. At low forcing am-
plitude, the autonomous unstable steady state shown in
Fig. 6 becomes unstable limit cycle and the limit cycle of
the autonomous system becomes a two-dimensional torus
[25,27,30]. This torus appears in the stroboscopic phase
plane as invariant circle. Since the ratio of the frequencies is
rational number (n/m = 2/1), a frequency locked oscilla-
tions are constrained to the surface of the torus. The period
of the oscillation is locked to be an integer multiple of the
forcing period i.e. 2P in our case. The phase-locked torus
has two pairs of alternating period 2P saddles and nodes
forming part of its boundaries. It is clearly shown that the
saddle-node bifurcation curves separate the frequency lock-
ing (entrainment) region from the quasi-periodic region that
exists outside the resonance horn. At the saddle-node bifur-
cation points, a Floquet multiplier passes out the unit circle
through+1 i.e. an unstable periodic trajectory collides with
stable one and disappears.

Fig. 8 also shows a period doubling region (PDR) is
formed at the top of the resonance horn. The period doubling
bifurcation occurs when a periodic trajectory becomes un-
stable by having one of its Floquet multipliers become more
negative than−1, then the new trajectory remains periodic
but has a period twice the period of the original trajectory.
McKarnin et al.[30] have described in details the formation
of such period doubling region. As the bottom of the period
doubling region is crossed from below, the period 2P saddle
which lie on the phased-locked torus collides with the un-
stable period 1P (this is the unstable limit cycle produced by
forcing the unstable steady state), leaving only a period 1P
saddle which separates the remaining period 2P nodes. As
the forcing amplitude is increased further, the stable period
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Fig. 9. One-parameter stroboscopic bifurcation diagram atω/ωo =√
2.5π/1.

2P node collides with the period 1P saddle as the top of the
period doubling curve is crossed to leave only stable period
1P node i.e. the system overpowered by the external forcing.
The region of the stable period 1P node is called fully en-
trainment region (FER) because the response of the forced
reactor is periodic and its period equals to the forcing pe-
riod (P). The crossing from period 2P to period 1P is period
halving. Fig. 9 shows a one-parameter stroboscopic bifur-
cation diagram atω/ωo = √

2.5π/1 = 2.802495608/1. It
is clearly shown that as the forcing amplitude increases the
system passes from a quasi-periodicity region (QPR) to a
2P (ER + PDR) regions and finally to a fully entrainment
region (FER) of periodicity 1P.

The response of the forced reactor is called quasi-periodic
when it has at least two incommensurate (their ratio is an
irrational number) frequencies associated with it. The tra-
jectories are constrained to the surface of a two-dimensional
torus. In this case, the trajectory never repeats itself but is
not chaotic i.e. the system does not exhibit sensitive depen-
dence on initial conditions. Here, the Floquet multipliers
form two complex conjugates cross the unit circle at an
angle.Fig. 10(a) shows a quasi-periodic phase plane ata =
0.08 andω/ωo = √

2.5π/1 = 2.170803764/1. The pattern
of the stroboscopic phase plane of the quasi-periodic at-
tractor looks like an invariant circle as shown inFig. 10(b).
The trajectory wanders complete over the surface of the
torus. At large forcing amplitude the quasi-periodic tra-
jectory bifurcates to fully entrainment region through a
Hopf bifurcation point of the stroboscopic map as shown
in Fig. 8. At the Hopf bifurcation point, the Floquet mul-
tipliers lie on the unit circle in the complex plane. The
Hopf bifurcation curves originate from points in the period
doubling curve at which the Floquet multipliers are dou-

Fig. 10. Quasi-periodic phase plane of the forced reactor atω/ωo =√
2.5π/1: (a) dynamic simulation phase plane; (b) stroboscopic phase

plane.

ble −1. This is implies that the tori outside the resonance
horn are fully entrained to 1P through the Hopf bifurcation
points.Fig. 11shows a one-parameter stroboscopic bifurca-
tion diagram atω/ωo = √

1.5π/1 = 2.170803764/1. The
sequence of bifurcation events as the forcing amplitude is
increased is quasi-periodicity, frequency locking region of
periodicity 2P, quasi-periodicity and finally bifurcation to a
fully entrainment region of periodicity 1P through a Hopf
bifurcation.

Fig. 12 shows the effect of the position of the center of
forcing (cf1, cf2, cf3) on the resonance horn. It is interesting
to note that the resonance horn decreases in size and its tip
becomes sharper as the center of forcing moves from HB1
to HB2 shown inFigs. 6 and 7. This effect may be due to
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Fig. 11. One-parameter stroboscopic bifurcation diagram atω/ωo =√
1.5π/1.

Fig. 12. Effect of the position of the center of forcing atY
cf1
c = 1.851811,

Y
cf2
c = 1.837218 andYcf3

c = 1.890070 on the 2/1 resonance horn.

the decrease of the natural period of the autonomous system
before forcing.

5. Conclusions

The steady state and dynamic behavior of two-phase sys-
tems in physical equilibrium in a continuous stirred tank re-
actor is investigated. In the range of parameters investigated,
the two-parameters bifurcation analysis for the autonomous

system shows that steady state multiplicity patterns not pre-
viously observed of isola and mushroom may develop in
the neighborhood of a cusp (singular) point of codimension
2. It is also shown that the coincidence of two Hopf bifur-
cation points and Hopf and saddle-node points may occur
forming degenerate singular points of codimension 2, which
violate the non-singularity and transversality conditions of
the hypotheses of classical Hopf theorem. It clear that, sev-
eral important steady state features that are difficult to as-
certain via numerical simulation are disclosed through the
pseudo-arclength continuation technique.

The results of the non-autonomous system clearly show
that the position of center of forcing relative to Hopf bifur-
cation points of the unforced reactor has a pronounced ef-
fect on the dynamic behavior of the forced reactor. Between
the two extremes of the frequency locking region and fully
entrainment region in the excitation diagram, complex dy-
namic behavior of the forced system may occur.

Despite the fact that the results reported in this paper for
limited regions in the parameter space, it seems satisfactory
to reflect the richness and complexity of the dynamic be-
havior of this system. It would be interested to confirm the
results obtained here by well-designed experiments.
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